鋰離子電池正極材料是含鋰的過渡金屬氧化物、磷化物如LiCoO2、LiFePO4等,導電聚合物如聚乙炔、聚苯、聚吡咯、聚噻吩、活性聚硫化合物等。
嵌鋰化合物正極材料是鋰離子電池的重要組成部分。正極材料在鋰離子電池中占有較大比例(正負極材料的質量比例為3:1~4:1),因此正極材料的性能將很大程度地影響電池的性能,其成本也直接決定電池成本高低。
1、LiCoO2正極材料
LiCoO2具有三種物相,即a-NaFeO2型層狀結構的LiCoO2、尖晶石結構的LT-LiCoO2和巖鹽相LiCoO2。層狀LiCoO2氧原子采用畸變立方密堆積序列,鈷和鋰分別占據立方密堆積中的八面體(3a)和(3b)位置;尖晶石結構的LiCoO2中氧原子為理想立方密堆積排列,鋰層中含有25%的的鈷原子,鈷層中含有25%鋰原子;巖鹽相晶格中Li+和Co3+隨機排列,無法清晰地分辨出鋰層和鈷層。
目前在鋰離子電池中應用較多的是層狀結構的LiCoO2,其具有工作電壓高、充放電電壓平穩,適合大電流充放電,比能量高、循環性能好等優點,
2、LiNiO2正極材料
理想LiNiO2晶體具有與LiCoO2類似的a-NaFeO2型層狀結構。LiNiO2的理論容量為275mAh/g,實際容量已達190-210 mAh/g。與LiCoO2相比,LiNiO2具有價格和儲量上的優勢。
LiNiO2存在的合成困難、結構相變和熱穩定性差等缺點,其根源都與LiNiO2的內在結構有關。對LiNiO2進行元素摻雜以改善其結構,是提高LiNiO2比容量、改善循環性能以及穩定性的有效手段。
3、Li-Mn-O系正極材料
由于錳資源豐富、價格低廉、無毒無污染,被視為最具發展潛力的鋰離子電池正極材料。Li-Mn-O系正極材料存在尖晶石型LiMn2O4和層狀LiMnO2兩種類型。
尖晶石型LiMn2O4具有安全性好、易合成等優點,是目前研究較多的鋰離子電池正極材料之一。但LiMn2O4存在John-Teller效應,在充放電過程中易發生結構畸變,造成容量迅速衰減,特別是在較高溫度的使用條件下,容量衰減更加突出。
4、LiFePO4正極材料
LiFePO4正極材料是一類新型的鋰離子電池用正極材料。由于鐵資源豐富、價格低廉并且無毒,因此LiFePO4是一種具有良好發展前景的鋰離子電池正極材料。
LiFePO4屬于橄欖石型結構,空間群為Pnmb。此結構中Fe3+/Fe2+相對于金屬鋰的電壓為3.4V,理論比容量170mAh/g,并且LiFePO4被氧化為FePO4-時,即充電過程中體積減小,可以彌補碳負極體積的膨脹,有助于提高鋰離子電池體積利用率。但LiFePO4材料的電阻率較大,電極材料利用率低,因此研究工作主要集中在解決其電導率問題上。
5、導電高聚物正極材料
鋰離子電池中,除了可以用金屬氧化物作為其正極材料外,導電聚合物也可以用作鋰離子電池正極材料。
目前研究的鋰離子電池聚合物正極材料有聚乙炔、聚苯、聚吡咯、聚噻吩等,它們通過陰離子的攙雜、脫攙雜而實現電化學過程。但這些導電聚合物的體積容量密度一般較低,另外反應體系中要求電解液體積大,因此難以獲得高能量密度。